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∗Abstract: Heart diseases are one of most frequent causes of death in the modern world. Therefore, the ECG
signal features have been under peer review for decades to improve medical diagnostics. In this paper, we provide
smoothing of the atrial premature complex (APC) of the electrocardiogram (ECG) signal using unbiased finite
impulse response (UFIR) smoothing filtering. We investigate the P-wave distribution using the Rice law and
determine the probabilistic confidence interval based on a database associated with normal heartbeats. It is shown
that the abnormality in the APC is related to the P-wave morphology. Different filtering techniques employing
predictive and smoothing filtering are applied to APC data and compared experimentally. It is demonstrated that
UFIR smoothing provides better performance among others. We finally show that the P-wave confidence interval
defined for the Rice distribution can be used to provide an automatic diagnosis with a given probability.
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1 Introduction

Electrocardiogram (ECG) signals have been under
profound investigation in medical sector for decades
and many heart diseases were identified based on
ECG. In past decades, methods of statistical signal
processing (SSP) were involved to provide accurate
decisions. Estimates provided by SSP algorithms
strongly depend on confidence intervals (CIs) speci-
fied for ECG features [1]. However, measured ECG
features are highly variable, because the ECG signals
vary depending of the human state and environmen-
tal conditions. That imposes difficulties in the recog-
nition heart diseases, among which the arrhythmia is
associated with abnormality of the cardiac rhythm [2].
Different types of arrhythmias can be studies analyz-
ing ECG features using SSP. But, in view of measure-
ment noise, optimal algorithms are often required.

The first segment of the ECG signal called ‘de-
polarization’ corresponds to the P wave (atrial depo-
larization). From this feature, the atrial premature
complex (APC) can be analysed via changes in the
P wave morphology. However, the ECG signal fea-
tures extraction is a complex process in view of noise

∗The results of this investigation were reported at the 22nd
International Conference on Circuits, Systems, Communications
and Computers (CSCC 2018), Majorca, Spain, July 14-17, 2018.

and some measurement uncertainties [3–8]. Methods
developed in the time and frequency domains include
linear predictors, Fourier and wavelet transform-based
analysis, etc. [9, 10]. Diverse techniques were also
developed to provide noise reduction [11]. In gen-
eral, denoising algorithms are designed such that the
fundamental properties of the ECG signal are not vi-
olated. In this regard, optimal smoothing is most
powerful due to the best denoising effect and opti-
mal tracking ability. The most widely used smoother
was developed by Savitsky and Golay [12]. It pro-
vides smoothing at the middle of the averaging hori-
zon. A more general solution is known is thep−shift
unbiased finite impulse response (UFIR) filter devel-
oped by Shmaliyet al. [13–15]. This approach im-
plies that lagq = −p > 0 must be selected for each
degree individually and not obligatorily at the middle
of the horizon to provide best denoising. Smoothing
filtering is organized here withp < 0, filtering with
p = 0, and predictive filtering withp > 0. An op-
timal Savitsky-Golay smoother minimizing the mini-
mum mean square error (MSE) is given in [16,17].

In this paper, we apply thep-shift UFIR smooth-
ing filter to ECG data and investigate the confidence
interval for the P-wave using the Rice distribution.
This investigation is based on the MIT-BIH Arrhyth-
mia Database available for free use from [18,19].
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Fig. 1: Typical ‘normal’ and ‘APC’ heartbeats from ECG.

1.1 Atrial Premature Complex (APC)

The APC is considered by medical community as a
independent predictor of atrial fibrillation, stroke, and
death. The frequency of occurrence of APC in the
general population is little-known. This abnormality
is also related to some other cardiovascular risk fac-
tors. The APC is characterized by premature beating
originated in the atria and can occur in different situ-
ations such as infection, myocardial ishemia, inflama-
tion, usage of tobaco, alcohol, and caffeine, or anxiety
and hypokalemia [2]. A fragment of the ECG heart-
beats is shown in Fig. (1), in which one recognizes
features such as P, QRS complex, and T. As can be
seen, the APC is characterized by abnormal P-wave
morphology providing a compensatory pause.

2 q-Lag UFIR Smoothing Filtering
of Discrete Polynomial ECG Model

Let us define the ECG signal in discrete time indexn
asxn and its measurementsn as

sn = xn + vn , (1)

wherevn is an additive zero mean noise. Because
noise is poorly known in such signals. we will ig-
nore its statistics. Signalxn can be represented with
a degree polynomial on a horizon ofN points, from
n − N + 1 − p to n − p, wherep ≶ 0 is a shift such
thatp = 0 means filtering,p < 0 smoothing filtering
with lag q = −p, andp > 0 predictive filtering with
stepp. Thep-shift UFIR filter can be designed in the
convolution-based batch forms as [20]

x̂n|n−p =

N−1+p
∑

i=1

hli(p)sn−i (2)

wherehln(p) , hln(N, p) is the (N, p)-variant l-
degree impulse response of the UFIR filter. In a com-
pact matrix form, (2) can be represented as

x̂n|n−p = W
T
l (p)SN , (3)

whereSN is the measurement vector and the UFIR
filter gain matrix is given by

W
T
l (p) = [hl(p)hl(1+p)(p) · · · hl(N−1+p)(p) ] . (4)

In order for the estimate (2) to be unbiased, the
following unbiasedness condition must be satisfied,

E{x̂n|n−p} = E{xn} , (5)

and the coefficients for gain (4) obeying (5) can be
found as shown below.

2.1 p-Shift Gain for UFIR Smoothing Filter

The gain matrixW̄l(p) for the UFIR filter has the fol-
lowing fundamental properties:

N−1+p
∑

i=p

hli(N, p) = 1 , (6)

N−1+p
∑

i=p

hli(N, p)iu = 0, 1 ≤ u ≤ l . (7)

representing the unit area (6) and zero moments (7).
In matrix forms, these properties can be represented
by the unbiasedness constraint

W̄
T
l (p)V(p) = J

T , (8)

where
J = [ 1 0 · · · 0 ]T (9)

andV(p) is the(l+1)×(l+1) Vandermonde matrix,

V(p) =















1 p p2

1 1 + p (1 + p)2

1 2 + p (2 + p)2

...
...

...
1 N − 1 + p (N − 1 + p)2















. (10)

By operating the right-side of (8) with an iden-
tity [VT (p)V(p)]−1

V
T (p)V(p) and discarding the

nonzeroV(p) from both sides, thep-shift UFIR fil-
ter gain becomes

W̄
T
l (p) = J

T [VT (p)V(p)]−1
V

T (p) . (11)

The UFIR filter gain can be represented with the
l-degree polynomial as [14,20]

hln(p) =

l
∑

j=0

ajl(p)n
j , (12)

WSEAS TRANSACTIONS on SIGNAL PROCESSING
Carlos Lastre-Dominguez, 

Yuriy S. Shmaliy, Oscar Ibarra-Manzano

E-ISSN: 2224-3488 37 Volume 14, 2018



where coefficientajl can be defined by solving an
equation

J = D(p)B(p) , (13)

where
B = [ a0l a1l · · · all ]

T (14)

and the(l + 1)× (l + 1) matrix is

D(p) = V
T (p)V(p) =











d0 d1 · · · dl
d1 d2 · · · dl+1
...

...
. . .

...
dl dl+1 · · · d2l











,

(15)
wheredm(p) =

∑N−1
i=p im, m ∈ [0, 2l], is a generic

component. Most frequently, filters of low-degree
l = [1, 4] are used with thep-shift polynomial gain
existing as [11]

hli(N, p) =

{

nontrivial, p ≤ i ≤ N − 1 + p

0, otherwise
.

(16)

2.2 Low-Degree Polynomial gains

For linear modeling of ECG signal on[p,N − 1 + p],
the ramp functionh1n(p) is used [14],

h1n(p) = a01(p) + a11(p)n , (17)

with the coefficients

a01(p) =
2(2N − 1)(N − 1) + 12p(N − 1 + p)

N(N2 − 1)
,

(18)

a11(p) =
6(N − 1 + 2p)

N(N2 − 1)
. (19)

This gain provides the best noise reduction inherent to
simple averaging with lagq = −p = N−1

2 .
For quadratic and cubic signal models, the poly-

nomial gains are given by

h2i(p) = a02(p) + a12(p)i+ a22(p)i
2 , (20)

h3i(p) = a03(p) + a13(p)i+ a23(p)i
2 + a33(p)i

3 ,
(21)

with the coefficients given in [14,20].

2.3 Optimized Adaptive Denoising of ECG
Signals

An optimal horizonNopt is required by UFIR filter-
ing to minimize the MSE. Because the ECG model is
not available, we determineNopt via the measurement

Q
int S

int
R

Nopt Nopt

Napt

Nmin

Measurement

Fig. 2: The ECG signal noisy measurement (sold) and
smoothed model (dashed). OptimalNopt is required for
slow parts and minimumNmin for the QRS complex. In the
algorithm,N varies adaptively betweenNopt andNmin.

residualsn − x̂n|n−p(N) and the mean square value
(MSV)

V (N) = E{[sn − x̂n|n−p(N)]2} (22)

by the relation [23]

N̂opt = argmin
N

∂V (N)

∂N
+ 1 . (23)

The optimal horizonNopt serves for slow parts of
the ECG beat shown in Fig. (2), by excluding fast ex-
cursions associated with the QSR complex. The MSV
Vn behaves similarly for different degreesl andNopt

has closely related values forl = 1, 2, 3. Because low
degrees provide better denoising [23], we selectl = 2
associated withNopt = 21 (Table 1).

Table 1: Effect of the UFIR degreel onNopt and MSE

l = 1 l = 2 l = 3 l = 4

Nopt 19 21 20 27

MSE×10−4 1.7 1.29 1.14 0.78

3 Comparison of Smoothing and
Others Techniques

The linear prediction method proposed in [24] and de-
veloped for ECG signals by Martis [9] was regarded
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as one of the standard approaches to analyse features
of digitized ECG signals. A heartbeatxn is modeled
here as a linear combination of its past input samples
xn−k, k = 1, 2, ...p, wherep is considered as the or-
der of prediction andak denotes thekth linear pre-
diction coefficient. In the prediction technique, the
estimation error is defined asen = xn − x̄n, where
the predictive estimate given bȳxn is computed as
x̄(n) =

∑p
k=1 akxn−k. According to Martis,en is a

portion of the ECG signal, which cannot be predicted
by linear models. To provide UFIR predictive filter-
ing, we configure the filter degree withp = 2 as stated
in [25]. The UFIR filter predicts estimates withp > 0
and both the prediction method and the UFIR predic-
tive filtering employ the discrete linear prediction of
undergoing process via its noisy measurement. Even
so, there are some zones in the ECG picture where
the linear prediction is not successful in extracting the
ECG features. Therefore, a comparative analysis of
different methods is required.

In Fig. 3(a), we sketch typical errors produced by
the predictive filtering, filtering, and smoothing filter-
ing. A part of the ECG signal taken from [120:200] is
zoomed in Fig. 3(b). As can be seen, all filters are suc-
cessful in denoising the P-wave. However, the UFIR
smoothing filter does it more precisely, while the pre-
dictive filter is less accurate. The average denoising
errors represented with the varianceσ2 are listed in
Table 2. This table suggests that the UFIR smoothing
filter outperforms both the UFIR filter and the stan-
dard linear predictor developed for ECG signals [9].

Table 2: Errors produced by the UFIR smoothing filter,
linear predictor, and UFIR predictive filter

Estimator Average Error σ2

Smooth-UFIR 1.7997× 10−5 4.2073× 10−5

Linear predictor−0.0074 2.1462 × 10−4

predict UFIR −2.4691 × 10−4 2.2799 × 10−4

4 P wave Detection

The known technique for ECG signal features extrac-
tion is based on the Pan Tompkings algorithm [26].
In this section, we develop another one based on the
UFIR smoothing filtering algorithm.

The QRS complex (Fig.2) is the first to detect. To
this end, the peak valueR (ECG signal maximum) is
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Fig. 3: Errors comparison produced by different estima-
tors: (a) heartbeat estimates: ”Smooth-UFIR” is the UFIR
smoothing filtering, ”Linear Predict” is the linear predic-
tion and ”Predict-UFIR” is the UFIR predictive filtering (b)
zoomed P-wave of the denoised ECG signal.

estimated aŝR and a window is introduced with two
points,Q′ andS′. The estimatêQ of Q is obtained by
the least value betweenQ′ andR̂. In turn, the estimate
Ŝ of S is provided by the least value betweenR̂ andS′.
ProvidedQ̂, R̂ andŜ, the QRS complex is suppressed
to save only the P and T waves. Then the estimates
P̂ of P andT̂ of T are found similarly by suppressing
one of the waves.

ProvidedP̂, the P wave is split into two segments,
P1 andP2, whereP1 is extended from the initial point
to P2. In segmentP1, we apply the derivative. Next,
we consider a small portion of the resulting signal and
find a global maximum. This point is next consid-
ered as the beginning of P wave and calledPonset.
In segmentP2, we also apply the derivative, con-
sider a small portion of the resulting signal, and find a
global minimum. This minimum, which corresponds
to the end of P wave, is calledPoffset. ValuesPonset

andPoffset are located at pointsPon
p andPoff

p , respec-
tively. Then the duration of P wave is computed as
Pdur = Poff

p − Pon
p . A distance between̂P and the

baseline is calculated and called the wave amplitude.

4.1 P-Wave Detection Algorithm

A pseudo code of the algorithm designed for the ECG
signal features extraction is shown as Algorithm 4.1.
Here,ssi is the smoothed ECG signal;Nb is the num-
ber of heartbeats;Baseline is a variable, which rep-
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resents the reference line;fs is the data sample fre-
quency; andInterval is a value, which determines
the window width to cover Q and S points. The algo-
rithm output consists of estimates of the ECG signal
features such aŝP of P,Pamp of the P amplitude,Pdur

of the P duration. All these features are extracted from
the smoothed signal.

Algorithm 1 A pseudo code of the algorithm to ex-
tract morphological features of P-wave
Data: ssi , Nb, Baseline, fs, Interval
Result: P̂, Pamp, Pdur.

1: Begin :
2: for i = 1 toNb do
3: ssi= beatss(i)

4:
[

R̂,Rp

]

=max(ssi)

5: [Q′ S′] =IntervalQRS(ssi, Interval)

6:
[

Q̂,Qp

]

=min(ssi(Q′ : Rp))

7:
[

Ŝ,Sp

]

=min(ssi(Rp : S′))

8: ssnew=suppress(ssi(Q′ : S′))

9:
[

P̂,Pp

]

=max(ssnew(1 : Q′))

10: P1=ssi(1 : Pp)
11: P2=ssi(Pp : Q′)
12:

[

Ponset,P
on
p

]

= max(diff (P1))
13:

[

Poffset,P
off
p

]

=min(diff (P2))
14: Baseline(1:length(ssi)) = Poffset(i)
15: Pamp(i)=P̂−Baseline(i)
16: Pdur(i)=(Poff

p − Pon
p )/fs

17: end for

The algorithm begins with computinĝR as the
ECG signal maximum, using functionmax. Func-
tion IntervalQRS is applied to computeQ′ andS′.
The Interval variable determines the window width
to cover the QRS complex and obtainQ̂ andŜ as two
minima betweenQ′ andS′. Functionmin is used to
find the above-mentioned points. Thesupressfunc-
tion is used to suppress the QRS complex. Function
max is used to estimateP. Functiondiff is intro-
duced to compute the derivatives in theP1, P2 in-
tervals. Functionsmax and min with diff are used
to find Ponset, Pon

p , Poffset, andPoff
p . Provided these

values, the duration is estimated of P features. Func-
tion length is introduced to compute the signal length.
TheBaseline variable determines the reference line
for computing the amplitude features. This variable is
equal toPoffset. As can see in the Fig. 4, the estimates
provided by the UFIR smoothing filter are more con-
sistent to the average P-wave than by other techniques.

P
d
u
r

P
am
p

Fig. 4: Applications of different filters to extract the ECG
amplitude features: (a) amplitud of P-wave and (b) duration
of P-wave. Here ”Smooth-UFIR” is the UFIR smoothing
filter, ”Predict UFIR” is the linear predictor and ”Predict
-UFIR” is the UFIR predictive filter.

5 Validation of P-Wave Feature Esti-
mates

Because the positive-valued P-values vary for normal
and abnormal heartbeats in a wide range, it is required
to specify the confidence interval for the P-wave esti-
mate to be valid with a given probability. We do it
by using the Rice probability density function (pdf),
which corresponds to the envelop of a harmonic sig-
nal in Gaussian noise [27,28],

p(r) =
r

σ2
exp

(

−
r2 +A

2σ2

)

I0

(

Ar

σ2

)

, (24)

whereσ2 is the variance of acting noise,A is the
harmonic signal amplitude, andI0(x) is the modified
Bessel function of the first kind and zeroth order. The
normalized Rice pdf is given by

p(v) = v exp

(

−
v2 + a2

2

)

I0(Av) , (25)

wherev = r
σ

anda = A
σ

. Note that (25) reduces to the
Rayleigh distribution [29] whena = 0 and, by large
a, it becomes Gaussian.

5.1 Confidence Interval for P-Wave

To specify the confidence interval for the P-wave es-
timates provided by Algorithm 4.1, we have inves-
tigated the P-wave histograms for normal and ab-
normal heartbeats taken from different persons as
shown in Fig. 5. We employed a register of dif-
ferent ages between female and male gender with
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Fig. 5: Normalized histograms and Rice-based approxi-
mations for P-wave features of healthy heartbeats.

9159 healthy and2540 APC beats. The name
of the signal is referenced based on the Arrhyth-
mia database. In this case the records used are
[101, 105, 220, 231, 100, 116, 202, 117, 223].
Other registers were also processed, but we select only
those records, which are most close to the reference
signal. The number of bins varies for each histogram
between 500 and 1000. Also, we consider more repre-
sentative features, because the ECG record has a con-
siderable variability. Valuesv anda for the Rice pdf
were chosen in the minimum MSE sense.

5.1.1 Confidence Interval for Normal Heartbeats

As can seen in the Fig. 6, the confidence interval (CI)
for the APC heartbeats has two boundaries, 0.009 and
0.125, with the probability of76.33%. For healthy
beats, the boundaries were found to be 0.1403 and
0.3074.

6 Conclusions

In this paper, we have presented the UFIR smoothing
filter as an estimator of the ECG signal features and
shown that it has better performance than the known
predictive and filtering solutions. We also specified
the confidence interval for the ECG heartbeats using
the Rice-based approximation of the P-wave distribu-
tion. Because the confidence intervals specified for
expert’s probabilities play a key role in automatic di-
agnosis of heart diseases, we consider this topic as a
next important part of our work.

Fig. 6: Confidence intervals for APC (sold) and healthy
(dashed) ECG heartbeats.
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